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The diffusion of hard particles that span an arbitrary number of lattice sites on a one-dimensional lattice can
be expressed in terms of a differential equation that contains one term that represents the random walk of
independent particles and another term that represents the interaction of particles. The cooperative term in-
volves the gradient of the pair distribution at the distance of closest approach. The moments of the particle
distribution can then be expressed as a set of recursion relations that involve moments of the pair distribution
at closest approach. For the case of the second moment this reduces to an equation involving the zeroth
moment of the pair distribution for particles spanning a single lattice site which is known exactly. The
independent-walk part of the second moment has the usual linear dependence with time while the cooperative
part introduces a contribution that varies asAt. @S1063-651X~96!03811-1#

PACS number~s!: 05.40.1j

I. INTRODUCTION

Diffusion plays an important role in many physical pro-
cesses. The standard linear diffusion equation in continuous
space treats the average random motion of independent par-
ticles, while the interaction between particles generally intro-
duces some kind of nonlinear terms. Solutions are known for
some special classes of nonlinear diffusion equations@1#,
such as Burger’s equation@2#. In this paper we consider one
of the simplest examples of cooperative diffusion, namely,
the motion of hard particles on a one-dimensional lattice, for
which we obtain a modified diffusion equation. As is the
case for the cooperative dynamics in many systems, the
problem of finding the moments of the distribution is simpler
than solving the complete problem@3,4# and in this case we
are able to give a general solution for the second moment.

In Fig. 1 we illustrate a sample configuration of particles
on a one-dimensional lattice where the particles cover an
arbitrary numbern of lattice sites. One can think of this
model as one involving particles of fixed length where the
lattice is made increasingly finer with lattice spacingd51/n.
The equilibrium properties of such a system were treated for
generald by Lee and Yang@5# in their famous paper on the
connection between phase transitions and the zeroes of the
grand partition function. The dynamics for generald is more
complicated and only the case ofd51 @as illustrated in Fig.
1~b!# has been solved@6#. In the present paper we obtain an
expression for the second moment of the particle distribution
for generaln ~or d! for the initial condition of a group of
close-packed particles with a finite second moment. The kind
of process we will use to illustrate the cooperative diffusion
of particles is illustrated in Fig. 2 where we have a close-
packed group ofM particles at zero time. As time increases
these particles diffuse out in both directions and the second
moment of the distribution increases.

We will approach this problem as follows. In Sec. II we
review briefly the application of Glauber’s approach for dif-
fusion to the special case ofn51 since we will find that the
second moment for generaln can be expressed in terms of
the properties of then51 system. Then, in Sec. III, we con-
struct the differential equation for diffusion for generaln.

This equation contains one set of terms that represents the
diffusion of independent particles and another involving the
pair distribution at the distance of closest approach that rep-
resents the cooperative part of the process. In Sec. IV we
form the moments of the distribution and find that we can
obtain an exact expression for the second moment in terms
of the zeroth moment of the pair distribution for the case
n51 which we construct in Sec. V. We discuss the contribu-
tion of the cooperative nature of the process to diffusion in
Sec. VI.

II. SOLUTION FOR n51

In this section we review the solution for one-dimensional
lattice diffusion with n51, as illustrated in Fig. 1~b!. The
solution for this model was first given by Kutner@6# in 1981;
a review of the subject is available@7#. Here we use the
method of Glauber@8# which has been applied to this model
@9#. Glauber’s method was devised to treat the one-
dimensional Ising model where at each site of a one-
dimensional lattice there was a spin that could have two ori-
entations. Here the two states are the state of occupancy of a
lattice site, occupied by a particle~11! and unoccupied
~21!. We let the variablesm represent the state of sitem,

sm561. ~2.1!

FIG. 1. Hard particles on a one-dimensional lattice.~a! Illustra-
tion of the case where the particle spans four sites~n54!. The
reference site keeping track of the location of the particle is shown
in black. ~b! A sample configuration of particles for the casen51
illustrating the allowed hops to nearest-neighbor sites.
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The rules for the hard-particle system are that if there is a
particle at sitem, then the closest another particle can get to
the reference particle ism6n where n measures the size
~number of sites spanned by! the particle. The basic dynamic
process in our diffusion model is the hopping from one lat-
tice site to another which we can represent by the following
reaction:

~21 !↔~12 !. ~2.2!

Following Glauber we can write the differential equation for
the time evolution of the average value ofsm as

d^sm&/dt522(
$s%

sm@w~m21,m!1w~m,m11!#P$s%.

~2.3!

The two terms involvingw in ~2.3! represent the exchange of
a particle at sitem with either site (m21) or (m11), as
illustrated in Fig. 3~a!. For the case ofn51 we have@9#

w~m,m11!5 1
2 ~12smsm11!, ~2.4!

which is zero for the nearest-neighbors combinations~11!
and~22! and one for~21! and~12!. Using ~2.4! in ~2.3!
gives

d^sm&/dt5^sm21&22^sm&1^sm11&. ~2.5!

We can write the average sigma as

^sm&5Pm2~12Pm!, ~2.6!

wherePm is the a priori probability that a particle will be
found at sitem. Using ~2.6! in ~2.5! we have

dPm /dt5Pm2122Pm1Pm11 , ~2.7!

which is the differential equation for independent particles
hopping on a one-dimensional lattice

•••↔~m21!↔~m!↔~m11!↔••• . ~2.8!

One then has the general solution for an arbitrary initial
configuration of particles

Pm~ t !5(
n

Pn~0!P~n0umt!, ~2.9!

where Pn(0) is the initial distribution of particles and
P(n0umt) is the conditional probability that given a particle
at site n at t50 the particle is at sitem at time t. The
conditional probabilities are given by@9#

P~n0umt!5e22tI m2n~2t !, ~2.10!

whereI n(2t) is the imaginary Bessel function. If we special-
ize to the case where the initial probabilities are either zero
or one, then we have

Pm~ t !5e22t(
n

Im2n~2t !, ~2.11!

where the sum is over the initial sites containing particles.
One could proceed in a similar manner forn.1, con-

structing the appropriatewm functions and obtaining the ana-
log of ~2.5!. In fact this leads to rather complicated equations
and in this case it is simpler to approach the differential
equations in a direct manner. The reason that the casen51
can be solved is that two particles can switch places~‘‘go
through one another’’! as if they were truly independent.
This does not alter the mathematics since the identity of the
particles is immaterial. But it does scramble the initial order
on the lattice.

III. DIFFERENTIAL EQUATIONS FOR n>1

In Eq. ~2.6! we gave the relation between^sm& andPm .
In this section we will find that it is more convenient to
express the differential equations directly in terms of thePm
and in this case it is easier to use the indices 0 and 1 to
represent a vacant and occupied lattice site~Glauber’s
method used the mathematical properties of11 and21!. In
order to change the probability of occupancy of sitem we
must consider jumps where neighboring particles move onto
the site~increasing the probability of occupancy! and also
jumps where a particle at sitem moves to neighboring sites
~decreasing the probability of occupancy!. The four possible
moves are illustrated in Fig. 4~a! for the case ofn54. Now
with n.1 we must stipulate that the requisite stretch of un-
occupied sites be present in order for an allowed move to
take place. The differential equation illustrated in Fig. 4~a!
can be written as follows~again forn54 where the paren-
theses enclosen sites spanned by a particle!:

dPm /dt5P„~10m00!0…1P„0~000m1!…2P„~1m000!0…

2P„0~0001m!…. ~3.1!

FIG. 2. Illustration of an initial close-packed block ofM par-
ticles ~here withn53! that with time diffuse out along the lattice in
both directions.

FIG. 3. Illustration of allowed hops for the case ofn51. The
sites being monitored are in parentheses.~a! Allowed moves for a
singlet.~b! Allowed moves for a nearest-neighbor doublet.
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We can rewrite~3.1! using the identity

P„~1m000!0…1P„~1m000!1…5P„~1m000!…5Pm . ~3.2!

The equality on the left hand side follows from the general
identity

P~s 0!1P~s 1!5P~s!, ~3.3!

wheres is any fixed sequence~sequences must be followed
by something and the only two possibilities are 0 and 1!. The
equality on the right hand side follows since if there is a
particle at sitem then because of the extent of excluded
volume the 0’s indicated must follow. Rearranging~3.2! we
have

P„~1m000!0…5Pm2P„~1m000!1…. ~3.4!

It is useful now to define the quantity

Qm5P„~1m000!1…. ~3.5!

This is the probability that two particles are at the distance of
closest approach and is related to the discrete pair distribu-
tion function through the relationgm5Qm/Pm . Using ~3.4!
and ~3.5! in ~3.1! we obtain

dPm /dt5Pm2122Pm1Pm111~Qm2n2Qm2n11!

1~Qm2Qm21!. ~3.6!

The first set of terms involvingPm21, Pm , and Pm11 is
identical with ~2.7! for the case ofn51 which is equivalent
to the diffusion of independent particles. But now forn.1
we have the additional terms involvingQ, the pair distribu-
tion, that represent the cooperative nature of diffusion for
n.1. The combinations of terms in~3.6! can be identified as
the finite difference~discrete space! approximations to the
following derivatives:

Pm2122Pm1Pm11'
]2P~x,t !

]x2
,

~3.7!

Qm2Qm21'
]Q~x,t !

]x
.

As n gets larger~or, with particle size fixed, the grid gets
finer!, these approximations become more accurate and in
the limit of d→0 we get the continuum limit. Then in con-
tinuous space

]P~x,t !

]t
5

]2P~x,t !

]x2
1

]Q~x,t !

]x
2

]Q~x2c,t !

]x
, ~3.8!

which is the familiar diffusion equation with extra terms in-
volving the variation of the probability of closest approach
along the lattice.

In order to solve~3.6! we need a differential equation for
theQm . This is constructed in analogy with the process used
for ~3.1!; the reactions that increase or decreaseQm are il-
lustrated in Fig. 4~b! ~again forn54!. The differential equa-
tion then is

dP„~1m000!1…/dt5P„~10m00!01…1P„~1m000!01…

2P„0~0001m!0001…

2P„1m000~1000!0…. ~3.9!

Using the identities

P„~1m000!~1000!0…1P„~1m000!~1000!1…

5P„~1m000!~1000!…5P„~1m000!1… ~3.10!

we obtain

dP„~1m000!1…/dt5P„~1m000!01…2P„~1m000!1…

1P„~1m21000!01…2P„~1m000!1…

1P„~1m000!~1000!1…

1P„~1m2n000!~1000!1…. ~3.11!

Defining

Rm5P„~1m000!01…,
~3.12!

Sm5P„~1m000!~1000!1…

then the differential equation of~3.9! can be written

dQm /dt5~Rm2Qm!1~Rm212Qm!1Sm2n1Sm . ~3.13!

So the rate of change of the two-particle correlationQ is
given in terms of another two-particle correlation (R) and
three-particle correlationS. We then require differential
equations forR and S which require higher order particle
correlations, and so on, giving an infinite hierarchy of equa-
tions.

We will not try to solve this hierarchy of equations ex-
plicitly but instead will focus attention on the moments of
the distributionPm . We will find that the second moment

FIG. 4. The contributions to the differential equation for par-
ticles with n54 at sitem. ~a! Moves contributing to the rate equa-
tion for the singlet.~b! Moves contributing to the rate equation for
the nearest-neighbor doublet.
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can be expressed in terms of the zeroth moment of the dis-
tributionQm which we can calculate in general.

When the system is at equilibrium all of the probabilities
in ~3.13! are independent of position on the lattice and we
obtain the result

Q5R1S. ~3.14!

IV. MOMENTS OF Pm

We consider the power moments of the distributionPm ,

mn5(
m

mnPm . ~4.1!

We consider the initial condition whereM sites are occupied
by particles in a symmetric fashion about the center site as
illustrated in Fig. 2. Thus we have for all time

m05M and modd50. ~4.2!

Taking the time derivative of~4.1! and using ~3.6! for
dPm/dt we have

dmn /dt5(
m

mn~Pm2122Pm1Pm11!

1(
m

mn~Qm2n2Qm2n111Qm2Qm21!.

~4.3!

Since the sum is over an infinite number of sites we can shift
the summation index as follows~for example!:

(
m

mnPm215(
m

~m11!nPm . ~4.4!

Then we can write~4.3! as

dmn /dt5(
m

Pm@~m11!n22mn1~m21!n#

1(
m

Qm@~m1n!n2~m1n21!n1mn

2~m11!n#. ~4.5!

We define the moments ofQm as

an5(
m

mnQm . ~4.6!

As illustrated in Fig. 5~a! the configuration of nearest-
neighbor pairs is symmetric about the origin. For the nearest-
neighbor pairs~theQm! we shift the value ofm to (m1n/2),
i.e., we measure moments from the center of the doublet, as
illustrated in Fig. 5~b!. Then we have

an85(
m

~m1n/2!nQm . ~4.7!

Starting with a symmetric configuration about the origin as
illustrated in Fig. 5~a! all of the even momentsan8 are zero.
The relations between the first fewan andan8 are

a085a0 ,

a185a11~n/2!a050 or a152~n/2!a0 , ~4.8!

a285a21na11~n2/4!a05a22~n2/4!a0 .

Then we have

dm2 /dt52m012~n21!a0 , ~4.9!

dm3 /dt50, ~4.10!

dm4 /dt52m0112m21~n21!~n222n12!a0

112~n21!a28 . ~4.11!

We see that ifn51 themn can then be obtained simply by
successive integration of a set of recursion relations. For
n.1 the moments ofPm depend on the moments ofQm . For
the special case ofm2 we have

m2~ t !5m2~0!12Mt12~n21!E
0

t

a0~s!ds. ~4.12!

We can determinem2(t) exactly if we knowa0. But a0 is

a05(
m

Qm . ~4.13!

Now this quantity does not depend on the position of the
particles on the lattice but simply depends on how many
nearest-neighbor contacts there are. So one can remove the
obligatory 0’s and reduce the calculation to that ofa0 for the
case ofn51. And we know the solution for that case exactly.
So we can determinem2(t) exactly, which we turn to now.

FIG. 5. ~a! Illustration of the symmetric initial conditions for
variousM andn. ~b! Illustration of the shift byn/2 for calculating
the moments of the doublet distribution.~c! Illustration of the
equivalent random walk process represented by Eq.~5.12!. The
numbers in parentheses are the initial probabilities of independent
random walkers for the case ofn55.
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V. CALCULATION OF a0

We need to know the quantitya0 which can be written in
terms of theP(1m1m11) for the casen51,

a05(
m

P~1m1m11!. ~5.1!

The functiona0 for the process illustrated in Fig. 2 has the
limits

a0~0!5M21 and a0~`!50. ~5.2!

To generate an expression fora0 for general time we return
to ~2.3! and develop the analog of this equation for the rate
of change of doublets. Rate equations for higher order cor-
relations were obtained by Glauber@8# for the one-
dimensional Ising model; the dynamics of the two-particle
correlation function has been treated by Evans and Hoffman
@10#. The processes involved are illustrated in Fig. 3. For the
special case of the nearest-neighbor doublet shown in Fig.
3~b! we have

d^smsm11&/dt522(
$s%

smsm11@w~m21,m!

1w~m11,m12!#P$s% ~5.3!

while for two particles further removed, as illustrated in Fig.
3~c!, we have

d^smsn&/dt522(
$s%

smsn@w~m21,m!1w~m,m11!

1w~n21,n!1w~n,n11!#P$s%, ~5.4!

which holds forn.m11. Using the form ofw given in
~2.4! we have

d^smsm11&/dt5^sm21sm11&22^smsm11&1^smsm12&

~5.5!

and

d^smsm1k&/dt5^sm21sm1k&1^sm11sm1k&

24^smsm1k&1^smsm1k21&

1^smsm1k11&. ~5.6!

We now define the quantities

xk5(
m

smsm1k , ~5.7!

where to avoid special conditions at the ends we use periodic
boundary conditions. Summing~5.5! and ~5.6! over m we
then obtain the set of equations

dx1 /dt522x112x2 ,

dx2 /dt52x124x212x3 ,

dx3 /dt52x224x312x4 ,

dx4 /dt52x324x412x5 , ~5.8!

A

dxn /dt52xn2124xn12xn11 ,

A

where the initial conditions are~see Fig. 2!

xn~0!5N24n ~n,M !,
~5.9!

xn~0!5N24M ~n>M !.

The relation forx1(0), for example, is obtained by consid-
ering a configuration ofM close-packed particles~with
n51!, . . .22222111122222 . . . , and counting
the number of nearest-neighbor productssmsm11. For
nearest-neighbor sites with like signs~2 or 1! the product is
11, but at the border between2 and1 the product is21,
which represents a change of22 from the11 product. Since
there are two ends of the sequence ofM 1’s we have
x1(0)5N12(22)5N24. We next introduce the following
new variables:

yn5@xn2~N24M !#/4M ~5.10!

and

t852t. ~5.11!

In terms of these variables Eqs.~5.8! and ~5.9! become

dy1 /dt852y11y2 ,

dy2 /dt85y122y21y3 ,

dy3 /dt85y222y31y4 ,
~5.12!

A

dyn /dt85yn2122yn1yn11 ,

A

with the initial conditions

yn~0!5H 12n/M ~n,M !

0 ~n>M ! .
~5.13!

Equations~5.12! and ~5.13! represent a random walk of in-
dependent particles on a 1D lattice with reflection at the first
site, as illustrated in Fig. 5~c! where the numbers in paren-
theses show the initial probabilities forM55.

The solution to this set of equations has been given by
van Kampen and Oppenheim@11# and later by Schwarz and
Poland@12# and is
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yn~ t8!5 (
k51

M21

yk~0!P~k0unt8!, ~5.14!

where

P~kun!5e22t8@ I n2k~2t8!1I n1k21~2t8!#. ~5.15!

Recalling thatt852t we have

y1~ t !5e24t (
k51

M21

~12k/M !@ I k21~4t !1I k~4t !# ~5.16!

and

x1~ t !5N24M @12y1~ t !#. ~5.17!

Now x1 is defined in terms of the average correlation ofsm
andsm11,

x15(
m

^smsm11&. ~5.18!

To expressx1 in terms of the probabilities of particle con-
figurations we use the identities~recall that 0 plays the role
of 21!

^smsm11&5P~1m1m11!2P~0m1m11!2P~1m0m11!

1P~0m0m11!,

P~1m0m11!1P~1m1m11!5P~1m!,
~5.19!

P~0m1m11!1P~1m1m11!5P~1m11!,

P~1m0m11!1P~0m1m11!1P~1m1m11!1P~0m0m11!51,

and we have@wherePm5P(1m)#

P~1m1m11!5^smsm11&/41~Pm1Pm11!/22 1
4 . ~5.20!

Summing over allm ~using periodic boundary conditions!
and using relations

x15(
m

^smsm11&, (
m

Pm5(
m

Pm115M , (
m

5N

~5.21!

we have

a05(
m

P~1m1m11!5x1/41M2N/4. ~5.22!

Using ~5.17! we have the final result

a0~ t !5My1~ t !5e24t (
k51

M21

~M2k!@ I k21~4t !1I k~4t !#.

~5.23!

The imaginary Bessel functions have the asymptotic form

e24tI n~4t !;S 1

8pt D
1/2

, ~5.24!

which gives the following asymptotic form fora0:

a0;
M ~M21!

A8pt
~ t→`!. ~5.25!

As t→0 we have@using~5.12! and~5.13! which are a set of
recursion relations for a series in powers oft for the yn#

a0;~M21!22t1••• ~ t→0!. ~5.26!

An approximate form that has both the limits given in~5.25!
and ~5.26! is

a05
M ~M21!

Aa18pt1b
, ~5.27!

where

a5S 2p~M21!

M D 2, b5M2Aa. ~5.28!

Figure 6 shows the exact form ofa0 given by ~5.23! and
compares the result of~5.27!. On the scale shown the two
relations are virtually indistinguishable. So~5.27! gives all
the pertinent features ofa0 ~and in particular the correct
asymptotic limits ast→0 andt→`!.

In particular we see that

a0;t21/2. ~5.29!

This means thatm2(t) of ~4.12! has the asymptotic form

m2~ t !;A1Bt1Ct1/25A1Bt@11~C/B!t21/2#;A1Bt.
~5.30!

From ~5.30! we see that the effect of cooperativity is to in-
troduce aAt correction tom2; the very long-time limit ofm2
is that for independent units~the particles behave as indepen-
dent units when they are very far apart!. In Fig. 7 we show
the behavior ofm2(t) for the caseM55 andn55. We plot
the function

Dm2 /M5@m2~ t !2m2~0!#/M , ~5.31!

with m2(t) given by~4.12! using~5.27! for a0(t). Referring
to ~5.30!, we indicate the contribution arising from the inde-
pendent diffusion of particles~linear in t!, the contribution

FIG. 6. The functiona0 as a function of time forn55. Shown
are the exact solution of~5.23! and the approximation of~5.27!
which are indistinguishable on the scale shown. The units of time
are relative to the basic hopping rate in~2.5!.
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arising from the interaction of the particles~varying as the
square root oft! and the complete function~labeled ‘‘total’’!
which is the sum of the two. At long times when the particles
have moved far apart from one another the behavior is domi-
nated by independent diffusion. At short times, however, the
cooperative nature of the process produces marked devia-
tions from simple diffusion.

VI. DISCUSSION

We have shown that the diffusion of hard particles on a
one-dimensional lattice with an arbitrary number of sites oc-
cupied by a particle can be written in terms of a differential
equation,~3.6!, that has one set of terms@the P’s in ~3.6!#
that represents the diffusion of independent particles and an-
other set@theQ’s in ~3.6!# that reflects the interactions be-
tween particles. This division into two sets of effects follows
through in the result for the second moment of the particle
distribution given by~4.12! where, as illustrated in~5.30!,
we get a term linear in time from the independent diffusion

part and a term varying as the square root of time from the
interaction part. From the example shown in Fig. 7 we see
that initially the effect of interaction is quite large, even for a
small number of particles~5 in Fig. 7! in the initial close-
packed cluster. As the particles move away from one another
the behavior becomes more and more like that characteristic
of independent particles. Our example shows that there are
very important nonideal components to diffusion even in our
simple one-dimensional model.

We have been able to calculate the second moment of the
particle distribution exactly, but not higher moments. The
reason that we can make progress with the second moment is
that when we form the time derivative of the moments and
use~3.6! for the time dependence of thePm most of them
dependence inmn cancels and we have the recursion rela-
tions illustrated in~4.9! and ~4.11! where the time depen-
dence of higher moments is given in terms of lower mo-
ments. If one knows the lower moments one simply
integrates with respect to time to get the higher moments.
For the case ofn51 we can obtain an arbitrary number of
moments. Of course for this case we know the exact solu-
tion, given in ~2.11!, but we do not need to know that to
calculate the moments of the distribution recursively. The
problem with going beyondm2 is seen in the equation form4,
~4.11!, where we requirem2 anda28 , the second moment of
theQ distribution ~doublets at closest approach!. We could
pursue the time dependence of thean @or an8—see~4.8!# in
the same manner but when we use~3.13! for the time depen-
dence of theQm we do not get the cancellation of powers of
m that leads to a recursion process as was the case with the
mn . Perhaps there is a way of using identities such as~3.4! to
write ~3.13! in terms of other species that does lead to a
recursion process, but we have not been able to find it.

The second simplification that allowed us to calculatem2
is that we require only the time integral ofa0, as shown in
~4.12!. Anda0(t) is independent ofn so we could obtain this
quantity for the casen51 which we can solve exactly. All of
the higher momentsan require knowledge of where the par-
ticle is on the lattice, involvingmn factors, and hence depend
very much on the value ofn.
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FIG. 7. The time evolution of the second moment for hard par-
ticles. The curve marked ‘‘total’’ shows the result of~4.12! using
~5.27! for a0(t) for the caseM55 and n55. The contributions
from independent (t) and cooperative interaction (t1/2) are indi-
cated. The units of time are relative to the basic hopping rate in
~2.5!.
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